Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci China Life Sci ; 66(7): 1589-1599, 2023 07.
Article in English | MEDLINE | ID: covidwho-2288738

ABSTRACT

The global COVID-19 pandemic emerged at the end of December 2019. Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are common lethal outcomes of bacterial lipopolysaccharide (LPS), avian influenza virus, and SARS-CoV-2. Toll-like receptor 4 (TLR4) is a key target in the pathological pathway of ARDS and ALI. Previous studies have reported that herbal small RNAs (sRNAs) are a functional medical component. BZL-sRNA-20 (Accession number: B59471456; Family ID: F2201.Q001979.B11) is a potent inhibitor of Toll-like receptor 4 (TLR4) and pro-inflammatory cytokines. Furthermore, BZL-sRNA-20 reduces intracellular levels of cytokines induced by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (poly (I:C)). We found that BZL-sRNA-20 rescued the viability of cells infected with avian influenza H5N1, SARS-CoV-2, and several of its variants of concern (VOCs). Acute lung injury induced by LPS and SARS-CoV-2 in mice was significantly ameliorated by the oral medical decoctosome mimic (bencaosome; sphinganine (d22:0)+BZL-sRNA-20). Our findings suggest that BZL-sRNA-20 could be a pan-anti-ARDS ALI drug.


Subject(s)
Acute Lung Injury , COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Respiratory Distress Syndrome , Mice , Humans , Animals , Lipopolysaccharides , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Influenza A Virus, H5N1 Subtype/metabolism , Pandemics , COVID-19/pathology , SARS-CoV-2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Cytokines/metabolism , Lung/metabolism
2.
J Med Virol ; 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2229560

ABSTRACT

BACKGROUND: Numerous studies have revealed severe damage to male fertility from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, raising concerns about the potential adverse impact on reproductive function of the coronavirus disease 2019 (COVID-19) vaccine developed based on the virus. Interestingly, there are several researchers who have studied the impact of the COVID-19 mRNA vaccine since then but have come up with conflicting results. As a near-ideal candidate for mass immunization programs, inactivated SARS-CoV-2 vaccine has been widely used in many countries, particularly in less wealthy nations. However, little is known about its effect on male fertility. METHODS: Here, we conducted a retrospective cohort study at a single large center for reproductive medicine in China between December 2021 and August 2022. 519 fertile men with no history of laboratory-confirmed COVID-19 were included and categorized into four groups based on their vaccination status: unvaccinated group (n=168), one-dose vaccinated group (n=8), fully vaccinated group (n=183), and booster group (n=160). All of them underwent a semen analysis and most had serum sex hormone levels tested. RESULTS: There were no significant differences in all semen parameters and sex hormone levels between the unvaccinated group and either vaccinated group. To account for possible vaccination-to-test interval-specific changes, sub-analyses were performed for two interval groups: ≤90 and >90 days. As expected, most of the semen parameters and sex hormone levels remained unchanged between the control and vaccinated groups. However, participants in vaccinated group (≤90 days) have decreased total sperm motility and increased FSH level compared with the ones in unvaccinated group. Moreover, some trends similar to those found during COVID-19 infection and recovery were observed in our study. Fortunately, all values are within the normal range. In addition, vaccinated participants reported few adverse reactions. No special medical intervention was required, and no serious adverse reactions happened. CONCLUSION: Our study suggests that inactivated SARS-CoV-2 vaccination does not impair male fertility, possibly due to the low frequency of adverse effects. This information reassures young male population who got this vaccine worldwide, and helps guide future vaccination efforts. This article is protected by copyright. All rights reserved.

3.
Curr Protein Pept Sci ; 23(2): 70-76, 2022.
Article in English | MEDLINE | ID: covidwho-1875250

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has swept the whole world and brought about public health crisis of unprecedented proportions. In the process of SARS-CoV-2 entry, angiotensin-converting enzyme 2 plays a key role. In addition, other protein molecules, such as transmembrane protease/serine 2, FURIN, Cathepsin L, and a disintegrin and metalloproteinase 17 will also affect the interaction between virus and host cells. Since the variations in the virus and human populations could determine the transmissibility of the virus and influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome, research on the variations of the above protein molecules and their role in COVID-19 is in full swing. In this review, we systematically reviewed viral and host genetic variations related to SARSCoV- 2 entry, as well as the relationship between the diversity of these variations and the COVID-19 pandemic. We aim to provide better insights into the transmission and pathogenesis of COVID-19 from the perspective of genetic variants and epigenetic factors so as to prevent, control, and treat COVID-19, especially among high-risk populations with genetic risk variants.


Subject(s)
COVID-19 , Pandemics , COVID-19/genetics , Epigenesis, Genetic , Humans , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2/genetics
4.
J Med Virol ; 93(12): 6714-6721, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544324

ABSTRACT

BACKGROUND: Patients with severe COVID-19 are more likely to develop adverse outcomes with a huge medical burden. We aimed to investigate whether a shorter symptom onset to admission time (SOAT) could improve outcomes of COVID-19 patients. METHODS: A single-center retrospective study combined with a meta-analysis was performed. The meta-analysis identified studies published between 1 December 2019 and 15 April 2020. Additionally, clinical data of COVID-19 patients diagnosed between January 20 and February 20, 2020, at the First Affiliated Hospital of the University of Science and Technology of China were retrospectively analyzed. SOAT and severity of illness in patients with COVID-19 were used as effect measures. The random-effects model was used to analyze the heterogeneity across studies. Propensity score matching was applied to adjust for confounding factors in the retrospective study. Categorical data were compared using Fisher's exact test. We compared the differences in laboratory characteristic varied times using a two-way nonparametric, Scheirer-Ray-Hare test. RESULTS: In a meta-analysis, we found that patients with adverse outcomes had a longer SOAT (I2 = 39%, mean difference 0.88, 95% confidence interval = 0.47-1.30). After adjusting for confounding factors, such as age, complications, and treatment options, the retrospective analysis results also showed that severe patients had longer SOAT (mean difference 1.13 [1.00, 1.27], p = 0.046). Besides, most biochemical marker levels improved as the hospitalization time lengthened without the effect of disease severity or associated treatment (p < 0.001). CONCLUSION: Shortening the SOAT may help reduce the possibility of mild patients with COVID-19 progressing to severe illness.


Subject(s)
COVID-19/pathology , Adult , COVID-19/virology , China , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
5.
Front Cell Infect Microbiol ; 11: 753721, 2021.
Article in English | MEDLINE | ID: covidwho-1505764

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has currently spread worldwide, leading to high morbidity and mortality. As the putative receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) is widely distributed in various tissues and organs of the human body. Simultaneously, ACE2 acts as the physiological counterbalance of ACE providing homeostatic regulation of circulating angiotensin II levels. Given that some ACE2 variants are known to cause an increase in the ligand-receptor affinity, their roles in acquisition, progression and severity of COVID-19 disease have aroused widespread concerns. Therefore, we summarized the latest literature and explored how ACE2 variants and epigenetic factors influence an individual's susceptibility to SARS-CoV-2 infection and disease outcome in aspects of ethnicity, gender and age. Meanwhile, the possible mechanisms for these phenomena were discussed. Notably, recombinant human ACE2 and ACE2-derived peptides may have special benefits for combating SARS-CoV-2 variants and further studies are warranted to confirm their effects in later stages of the disease process. As the uncertainty regarding the severity and transmissibility of disease rises, a more in-depth understanding of the host genetics and functional characteristics of ACE2 variants will not only help explain individual clinical differences of the disease, but also contribute to providing effective measures to develop solutions and manage future outbreaks of SARS-CoV-2.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Humans , Polymorphism, Genetic , SARS-CoV-2
6.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1341362

ABSTRACT

BACKGROUNDThe fungal cell wall constituent 1,3-ß-d-glucan (BDG) is a pathogen-associated molecular pattern that can stimulate innate immunity. We hypothesized that BDG from colonizing fungi in critically ill patients may translocate into the systemic circulation and be associated with host inflammation and outcomes.METHODSWe enrolled 453 mechanically ventilated patients with acute respiratory failure (ARF) without invasive fungal infection and measured BDG, innate immunity, and epithelial permeability biomarkers in serially collected plasma samples.RESULTSCompared with healthy controls, patients with ARF had significantly higher BDG levels (median [IQR], 26 pg/mL [15-49 pg/mL], P < 0.001), whereas patients with ARF with high BDG levels (≥40 pg/mL, 31%) had higher odds for assignment to the prognostically adverse hyperinflammatory subphenotype (OR [CI], 2.88 [1.83-4.54], P < 0.001). Baseline BDG levels were predictive of fewer ventilator-free days and worse 30-day survival (adjusted P < 0.05). Integrative analyses of fungal colonization and epithelial barrier disruption suggested that BDG may translocate from either the lung or gut compartment. We validated the associations between plasma BDG and host inflammatory responses in 97 hospitalized patients with COVID-19.CONCLUSIONBDG measurements offered prognostic information in critically ill patients without fungal infections. Further research in the mechanisms of translocation and innate immunity recognition and stimulation may offer new therapeutic opportunities in critical illness.FUNDINGUniversity of Pittsburgh Clinical and Translational Science Institute, COVID-19 Pilot Award and NIH grants (K23 HL139987, U01 HL098962, P01 HL114453, R01 HL097376, K24 HL123342, U01 HL137159, R01 LM012087, K08HK144820, F32 HL142172, K23 GM122069).


Subject(s)
COVID-19 , Candida , Immunity, Innate/immunology , Respiration, Artificial , beta-Glucans/blood , Biomarkers/blood , COVID-19/immunology , COVID-19/therapy , Candida/immunology , Candida/isolation & purification , Capillary Permeability/immunology , Critical Illness/therapy , Female , Gastrointestinal Microbiome/immunology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory System/immunology , Respiratory System/microbiology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
7.
Asian Agricultural Research ; 12(8):78-82, 2020.
Article in English | CAB Abstracts | ID: covidwho-914893

ABSTRACT

In the context of preventing and controlling novel coronavirus pneumonia, how to ensure the quality of higher education has become a hot issue of social concern in China. In this article, the problems and challenges are analyzed from teacher, student and technology levels, the teaching pattern of "re-flipped classroom" and the teaching model of "SPOC + MOOC + live broadcast" are proposed, the three teaching methods of PBL, OBE and mind mapping are integrated, the teaching evaluation is introduced to teaching design, and finally, the implementation suggestions are put forward to ensure the quality of teaching.

8.
Natl Sci Rev ; 7(6): 1003-1011, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-820587

ABSTRACT

A recent outbreak of pneumonia in Wuhan, China was found to be caused by a 2019 novel coronavirus (2019-nCoV or SARS-CoV-2 or HCoV-19). We previously reported the clinical features of 12 patients with 2019-nCoV infections in Shenzhen, China. To further understand the pathogenesis of COVID-19 and find better ways to monitor and treat the disease caused by 2019-nCoV, we measured the levels of 48 cytokines in the blood plasma of those 12 COVID-19 patients. Thirty-eight out of the 48 measured cytokines in the plasma of 2019-nCoV-infected patients were significantly elevated compared to healthy individuals. Seventeen cytokines were linked to 2019-nCoV loads. Fifteen cytokines, namely M-CSF, IL-10, IFN-α2, IL-17, IL-4, IP-10, IL-7, IL-1ra, G-CSF, IL-12, IFN-γ, IL-1α, IL-2, HGF and PDGF-BB, were strongly associated with the lung-injury Murray score and could be used to predict the disease severity of 2019-nCoV infections by calculating the area under the curve of the receiver-operating characteristics. Our results suggest that 2019-nCoV infections trigger extensive changes in a wide array of cytokines, some of which could be potential biomarkers of disease severity of 2019-nCoV infections. These findings will likely improve our understanding of the immunopathologic mechanisms of this emerging disease. Our results also suggest that modulators of cytokine responses may play a therapeutic role in combating the disease once the functions of these elevated cytokines have been characterized.

SELECTION OF CITATIONS
SEARCH DETAIL